

HIO100 - Especificação Técnica

Módulo de I/O para Controladores NEON / RION

PMU.111100

10/03/2017

version 1.08

Sumário

HO100	- Especificação Técnica	1
C	opyright e Disclaimer	1
Α	visos Técnicos de Segurança	2
1	Apresentação	3
2	Dados Técnicos	3
3	Interface de Processo	5
4	Conexões	6
5	Diagrama de Bloco	7
6	Interface com aplicação Ladder	7
7	Exemplo de Utilização	7
8	Mapa de Dados do Módulo	8
Q	Codificação do Produto	11

HIO100 - Especificação Técnica

O conteúdo deste documento é parte do Manual do Usuário dos controladores NEON/RION da HI tecnologia. A lista de verbetes consta na versão completa do manual. Para obter essa documentação acesse o nosso site: www.hitecnologia.com.br

Copyright e Disclaimer

Direitos autorais

Salvo sob autorização expressa da HI Tecnologia, não é permitida a reprodução desta documentação, assim como a exploração e entrega do seu conteúdo a terceiros. O não cumprimento dessas regulamentações pode resultar na exigência de indenizações. Todos os direitos reservados, especialmente no que se refere à concessão de patente ou registro do modelo, sendo de propriedade da HI Tecnologia Ind. e Com. Ltda.

Exclusão de responsabilidades

O conteúdo desta documentação foi verificado quanto à conformidade com o hardware e software descritos. Porém, não é possível excluir potenciais desvios, de modo que não nos responsabilizamos pela total conformidade. Os dados desta documentação são regularmente revistos e as eventuais correções são incluídas, de modo a serem prontamente disponibilizadas em sua versão mais recente. Caso se faça necessário, entre em contato com a HI Tecnologia para esclarecimento de dúvidas sobre este manual.

Informações adicionais

- Portal web da HI tecnologia
- Perguntas Frequentes (FAQ da HI Tecnologia)

Contatos

- · Vendas vendas@hitecnologia.com.br
- Suporte técnico suporte@hitecnologia.com.br
- Engenharia de aplicação engenharia@hitecnologia.com.br

Avisos Técnicos de Segurança

Indica uma situação de alto perigo, a qual poderá resultar em morte ou ferimentos graves;

Indica uma situação potencial de perigo que, se não for evitada, poderá resultar em ferimentos graves;

Indica uma situação potencial de perigo que, se não for evitada, poderá resultar em ferimentos pequenos ou moderados;

Indica uma situação de perigo de choque elétrico que, se não for evitada, poderá resultar em ferimentos, incêndio e/ou morte;

Desconecte o equipamento de sua fonte de energia antes de executar os procedimentos a seguir;

Conteúdo importante: a informação apresentada deve ser lida com atenção, pois impacta no correto funcionamento do equipamento;

Cuidado ao manipular líquidos sobre o equipamento; Não opere o equipamento ao tempo;

Possibilidade de danos ao equipamento, caso não observadas as recomendações indicadas;

Componentes ou equipamentos sensíveis a campos magnéticos;

Componentes ou equipamentos sensíveis à descarga eletrostática; Manuseie apenas em condições apropriadas.

1 Apresentação

HIO100 é um módulo analógico e digital desenvolvido para a linha de produtos ON da HI Tecnologia. Disponibiliza ao usuário 4 entradas analógicas em corrente com resolução de 12 bits, 1 canal de entrada para célula de carga a 4 fios com sensibilidade de 2mV/V e resolução de 15 bits, 1 saída analógica de instrumentação para corrente (0/4 a 20mA) ou tensão (0 a 10V), 2 entradas digitais isoladas eletricamente por opto-acopladores para sinais de 10 a 30V DC do tipo PNP e 1 saída digital a transistor do tipo PNP, isolada eletricamente por optoacoplador, podendo comutar cargas com tensões entre 10 a 30V DC / 500mA (via alimentação externa). Conectores destacáveis do tipo alavanca permitem a conexão com o processo de forma rápida, prática e segura.

2 Dados Técnicos

2.1 Gerais

Alimentação	5V DC / 3.3V DC (*)
Consumo	300 mW
Temperatura de operação	0 a 60 °C
Temperatura de estocagem	-20 a 70 °C
Umidade relativa	< 95% sem condensação
Peso do módulo	30 g

(*) - Fornecidos pela fonte do controlador

2.2 Entradas Digitais

Quantidade de canais	2
Tipo de entrada	PNP
Tensão de operação	10 a 30V DC
Faixa de detecção de nível 0	05V DC
Faixa de detecção de nível 1	1030V DC
Isolação	Sim, por opto-acopladores

Tensão de isolação	1kV RMS
Frequência Máxima de Operação	É diretamente dependente do tempo de varredura do programa ladder corrente, podendo chegar até o limite de 3kHz.
Proteção	Contra inversão de polaridade

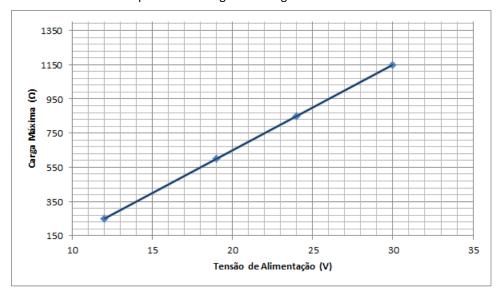
2.3 Saídas Digitais

Quantidade de canais	1
Tipo de saída	PNP
Tensão de operação	10 a 30V DC
Frequência Máxima de Operação	É diretamente dependente do tempo de varredura do programa ladder corrente até o limite de 3kHz.
Isolação	Sim, por opto-acopladores
Tensão de isolação	1kV RMS
Corrente máxima por canal	500 mA
Tensão máxima (chaveamento)	30V DC
Proteção	Contra surto e curto-circuito

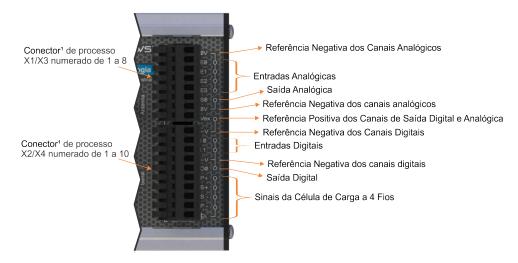
2.4 Entradas Analógicas

Quantidade de canais	4
Sinais	0 a 20 mA ou 4 a 20mA
Resolução	12 bits
Impedância de entrada	125 Ohms
Proteção	Contra surto e sobretensão

2.5 Entrada para Célula de Carga


Quantidade de canais	1
Tipo de entrada	Sinais a 4 fios
Tensão de excitação	4,096V
Resolução	15 bits
Sensibilidade	2mV/V
Impedância de carga	350 ohms
Isolação	Sim - isolação galvânica de 1kV
Proteção	Contra surto e ESD (Padrão IEC 61000-4-2)

2.6 Saída Analógica


Quantidade de canais	1
Tipo de saída	0 a 20 mA, 4 a 20 mA ou 0 a 10 V DC

Resolução	12 bits
Impedância de saída em tensão	aproximadamente 500 ohms
Proteção	Contra curto circuito, surto e ESD (Padrão IEC 61000-4-2)
Isolação	Sim - isolação galvânica de 1kV
Alimentação externa para saida em tensão	13 a 30V DC
Alimentação externa para saida em corrente	19 a 30V DC para cargas de até 600 ohms Para outros valores de carga conectadas a saída, consulte o gráfico abaixo.

Nas saídas configuradas para corrente, a relação entre a tensão de alimentação externa das saídas analógicas e a carga máxima a ser conectada nesta saída esta apresentada no gráfico a seguir.

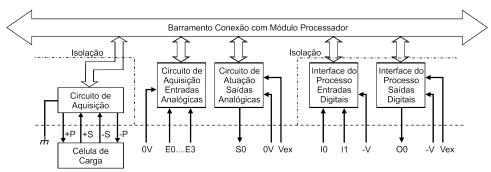
3 Interface de Processo

4 Conexões

O módulo HIO100 possui dois conectores de interface com o processo, que são identificados como **X1** (8 bornes) e **X2** (10 bornes) no 1° módulo de I/O e **X3** (8 bornes) e **X4** (10 bornes) no 2° módulo de I/O, caso exista. Os bornes são numerados conforme as tabelas a seguir:

Borne X1/X3	Identificador	Descrição
1	0V	Referência negativa dos canais analógicos (OV)
2	EO	Entrada analógica E0
3	E1	Entrada analógica E1
4	E2	Entrada analógica E2
5	E3	Entrada analógica E4
6	S0	Saída analógica 0
7	0V	Referência negativa dos canais analógicos (OV)
8	Vex	Referência positiva dos canais de saída digital e analógica

Borne X2/X4	Identificador	Descrição
1	-V	Referência negativa dos canais de saída digital.
2	10	Entrada digital IO
3	I1	Entrada digital I1
4	-V	Referência negativa dos canais digital.
5	00	Saída digital O0
6	P+	Alimentação positiva da célula de carga
7	S+	Sinal positivo da célula de carga
8	S-	Sinal negativo da célula de carga
9	P-	Alimentação negativa da célula de carga
10	Terra	Entrada para conexão de aterramento

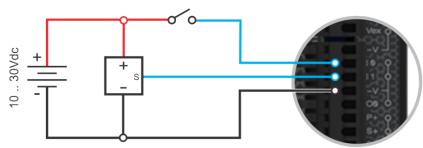

Sugestão

Para os sinais da célula de carga, utilize cabos com blindagem, conectando-a ao borne X2-10/X4-10.

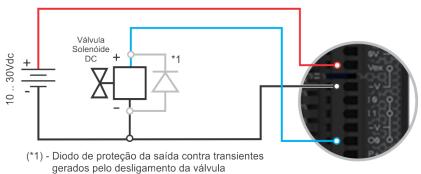
Importante

O offset de corrente 0 a 20mA ou 4 a 20mA é configurado através do ambiente de programação **SPDSW**, a partir da versão 3.2.00 ou superior.

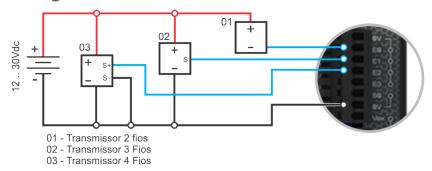
5 Diagrama de Bloco


6 Interface com aplicação Ladder

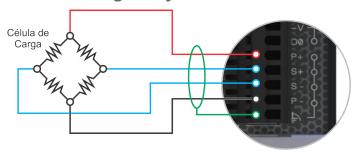
A programação ladder pode ser realizada via software **SPDSW**. As formas como os sinais analógicos podem ser visualizados no programa estão apresentadas a seguir.


Canal de I/O do módulo	Escala de valores
Entradas analógicas (4 a 20mA)	0 a 4095 (Indica "-1" se entrada não conectada)
Entradas analógicas (0 a 20mA)	0 a 4095
Entrada célula de carga	-16384 a 16383
Saídas analógicas	0 a 4095

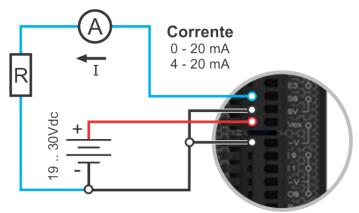
7 Exemplo de Utilização


7.1 Entradas Digitais

7.2 Saída Digital



7.3 Entradas Analógicas



A configuração de fábrica para os canais de entradas analógicas é de 4 a 20mA.

7.4 Entrada para Célula de Carga - 4 fios

7.5 Saídas Analógicas

8 Mapa de Dados do Módulo

Informações de status do módulo (quando existente), bem como o valor corrente dos canais de I/O estão disponíveis para acesso remoto através dos canais de comunicação do respectivo controlador (NEON ou RION).

Quando utilizado o protocolo SCP-HI para este acesso a informação é mapeada em variáveis do tipo F (inteiro de 16 bits com sinal) na base do controlador. Estas variáveis podem ser obtidas especificando uma leitura ou escrita de variável M com o endereço associado negativo ou seja

```
F10 = M-10
```

Quando utilizado o protocolo MODBUS para este acesso a informação é mapeada em variáveis do tipo HOLDING REGISTER (inteiro de 16 bits com sinal) na base do controlador com um offset de 30000 ou seja

F10 = H30010

Na tabela disponível a seguir, o endereço da variavel é fornecido no seguinte formato

Fxxxx[yyyyy] xxxx especifica o endereço da variável de sistema [F] a ser acessada para escrita ou leitura.

especifica o endereço MODBUS a ser utilizado para acesso a variável de sistema xxxx através da função MODBUS HOLDING REGISTER.

8.1 Base de variáveis de sistema para o módulo HIO100

Esta sessão apresenta as variáveis de sistema específicas para o módulo HIO100. Este módulo de I/O pode ser utilizado pelos controladores NEON e RION. Apenas o controlador NEON possui suporte para um segundo módulo de I/O (slot 2).

Slot 1: NEON/RION	Slot 2: NEON	R/ W	Descrição		
Base status e co	nfiguração do má	dulo ((10 variáveis)		
F1100[31000] 克1	F1200[31200]		Informações comuns dos módulos de I/O		
F1109[31009]	F1209[31209]				
Base de leitura de I/O do módulo (20 variáveis)					
F1110[31110]	F1210[31210]	R	Estado das entradas digitais mapeadas em bits, onde os bits 01 correspondem ao estado das ED do módulo HIO100, bits 215 reserva		
F1111[31111]	F1211[31211]	R	Estado das saídas digitais mapeadas em bits, onde o bit 0 corresponde ao estado da SDO do módulo HIO100, bits 115 reserva		
F1112[31112]	F1212[31212]	R	Valor corrente da entrada analógica EAO do módulo HIO100 (-1, 0 4095) Z2		
F1113[31113]	F1213[31213]	R	Valor corrente da entrada analógica EA1 do módulo HIO100 (-1, 0 4095)		
F1114[31114]	F1214[31214]	R	Valor corrente da entrada analógica EA2 do módulo HIO100 (-1, 0 4095)		
F1115[31115]	F1215[31215]	R	Valor corrente da entrada analógica EA3 do módulo HIO100 (-1, 0 4095)		
F1116[31116]	F1216[31216]	R	Valor corrente da entrada de célula de carga EA4 do módulo HIO100 (-16384 +16383) \Box 3		
F1117[31117]	F1217[31217]	R	Valor corrente da saída analógica SO (0 4095)		
F1118[31118]	F1218[31218]		Reserva		
F1129[31129]	F1229[31229]		Reserva		
Base de escrita d	de I/O do módulo	(20 va	ariáveis)		
F1130[31130]	F1230[31230]	R/ W	Atuação na saída digital O0 do módulo HIO100 (Liga = 1; Desliga = 0) 틴 닉		
F1131[31131]	F1231[31231]	R/ W	Atuação na saída analógica S0 do módulo HIO100 (0 4095)		
F1132[31132]	F1232[31232]		Reserva		
F1149[31149]	F1249[31249]		Reserva		
Reserva (50 vari	áveis)				
F1150[31150]	F1250[31250]		Reserva		
F1159[31159]	F1259[31259]		Reserva		

F1160[31160]	F1260[31260]	Controla o módulo de aquisição do sinal da célula de carga. (Liga = 1; Desliga = 0);
F1161[31161]	F1261[31261]	Controla o driver de saída analógica. (Liga = 1; Desliga = 0);
F1162[31162]	F1262[31262]	Reserva
F1135[31199]	F1299[31299]	Reserva

 \blacksquare 10 valor entre colchete [...] representa o endereço equivalente em MODBUS da variável F, a ser acessada utilizando a função READ/WRITE HOLDING REGISTER.

2O valor -1 indica falha no canal (valor de corrente abaixo de 3.6 mA). Este valor é apresentado apenas para os canais configurados como entrada de corrente de 4 a 20 mA. Demais valores analógicos na escala de 12 bits (0..4095).

43Canal calibrado para um célula de carga de 350 Ohms de impedância e sensibilidade de 2 mV/V.

릭 Qualquer valor com o bit 0 igual a 1 irá ativar o canal.

9 Codificação do Produto

9.1 Código do módulo de I/O

Código	Identificação
301.111.100.001	Módulo de aquisição híbrido com 4 entradas analógicas, 1 entrada para célula de carga, 2 entradas digitais, 1 saída digital e 1 saída analógica.

9.2 Codificação de Controladores NEON com HIO100

Código	Identificação
300.111. A 2 C . D E F	A : Alimentação C : Conectividade D : Primeiro Módulo de I/O = 1 (HIO100 no Slot 1) E : Segundo Módulo de I/O = 1 (HIO100 no Slot 2) F : Sem customização

Para consultar todos os modelos, opções de conectividade e módulos de I/O acesse Codificação dos modelos de controladores NEON

9.3 Codificação de IO Remoto RION com HIO100

Código	Identificação
300.C01. A BC . D EF	A : CPU BC : Conectividade D : Módulo de I/O = 1 (HIO100) EF : Sem customização

Para consultar todos os modelos, opções de conectividade e módulos de I/O acesse Codificação dos modelos de controladores RION